2025 : 4 : 22

Babak Jaleh

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 9244854600
HIndex:
Faculty: Faculty of Science
Address:
Phone:

Research

Title
The Role of Carbon-Based Materials for Fuel Cells Performance
Type
JournalPaper
Keywords
CarbonFuel CellCatalystEnergy Storage
Year
2022
Journal CARBON
DOI
Researchers Babak Jaleh ، mahmoud Nasrollahzadeh ، ، ، ، Nilesh R. Manwar ، Radek Zboril ، Paolo Fornasiero ، Manoj B. Gawande

Abstract

Global reduction of traditional fuel sources such as natural gases, coal, and petroleum has led researchers to seek prominent and beneficial energy conversion devices. Fuel cells are a newfound and upcoming energy generation systems that have progressed rapidly. Fuel cells are popular eco-friendly devices among different energy conversion devices due to their cost-effectiveness and high output. In a fuel cell composed of a cathode, anode, and electrolyte, the electrical energy is produced through chemical reactions. Various fuels such as H2, alcohols, especially ethanol and methanol, and formic acid are applied in fuel cells. Large scale application of this technology mainly depends on two aspects, including one is the possibility to produce on a large scale and accessible cost-efficient catalytic materials (anodic and cathodic), and second is the stable and high performing membrane in fuel cells. Among various investigated materials, carbon supports and metal-free carbon materials are widely used in fuel cell devices, which increases their overall electrochemical surface area (ECSA) and performance. Carbon-based materials with high surface area, excellent electrical conductivity, and high porosity is known to be a primary substrate for electrochemical energy storage applications such as batteries, supercapacitors, and fuel cells. Herein, we have reviewed the efficacy of carbon-based materials on electrocatalytic activity, stability, and output performance of different fuel cells.