Here, a solution combustion method was employed to construct a photoanode based on bismuth vanadate (BV) composition. To curtail the fast charge recombination, phosphorus-doped g-C3N4 nanosheets (PCNS) in combination with BV are considered a potential approach. The prepared solution combustion facilitated the formation of a BiVO4-PCNS (BV-PCNS) hybrid photoanode with worm-like morphology with a simple setup. The weight ratio of PCNS/BiVO4 and the loading volume/cm2 were optimized to determine the most efficient photoanode. The highest photocurrent density of 0.5 mA/cm2 at 1.23 V vs reversible hydrogen electrode (RHE) under 1 sun illumination was achieved for the hybrid nanostructure at 2 wt % of PCNS/BiVO4 and 50 μL loading volume/cm2 (BV-PCNS2-50), which is fivefold higher than that of the BV control sample.