In this work, the catalytic performance of hardystonite/palladium nanocomposite (HT/Pd) for hydrogen evolution reaction (HER) and reduction of organic pollutants in water has been studied. For this purpose, palladium nanoparticles (Pd NPs) were synthesized by laser ablation in liquid (LAL) method in different concentrations and decorated on hardystonite substrate using a simple method. HT/Pd nanocomposite was characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and Brunauer-Emmett-Teller (BET) analyses. The prepared nanocomposites were coated on a stainless steel mesh and their HER activity was investigated using cyclic voltammetry (CV). The results indicated that HT/Pd catalyst had good HER performance and capability of hydrogen storage. Moreover, HT/Pd nanocomposite with high surface area exhibited excellent catalytic activity in Cr(VI) reduction within 2.5 min