In this study, a FEM-based tool wear approach with a focus on the geometry of the worn tool, especially the changes of flank wear land inclination angle, was developed. The relationship between the variables of the wear rate equation and the average nodal temperature on the flank wear land through integrating FE-simulations of the cutting process and Response Surface Methodology (RSM) was determined in order to define the temperature as a function of wear rate model parameters. Then, that data was used to calibrate the wear rate equation which was obtained by establishing the relationship between the Usui wear rate equation and the geometry of the worn tool, using a MATLAB program. This approach was validated by comparing the predicted flank wear rates and experimental measurements. The estimated flank wear shows some improvement compare to the model with a constant inclination angle.