2025 : 4 : 22
Abbas Afkhami

Abbas Afkhami

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 7003454553
HIndex:
Faculty: Faculty of Chemistry and Petroleum Sciences
Address:
Phone:

Research

Title
Transdermal Delivery of Insulin Using Combination of Iontophoresis and Deep Eutectic Solvents as Chemical Penetration Enhancers: In Vitro and in Vivo Evaluations
Type
JournalPaper
Keywords
Transdermal iontophoresis Insulin Deep eutectic solvents Chemical penetration enhancers
Year
2023
Journal JOURNAL OF PHARMACEUTICAL SCIENCES
DOI
Researchers ، Tayyebeh Madrakian ، Abbas Afkhami ، Arash Ghoorchian ، Saeid Ghavami ، Kamran Tari ، Mohammad Reza Samarghandi

Abstract

A serious challenge in transdermal iontophoresis (IP) delivery of insulin (INS) is the low permeability of the drug across the skin. In this paper, we introduced deep eutectic solvent (DESs) as novel chemical penetration enhancers (CPEs) for transdermal IP of INS across rat skin, both in vitro and in vivo. Three different DESs based on choline chloride (ChCl), namely, ChCl/UR (ChCl and urea), ChCl/GLY (ChCl and glycerol), and ChCl/ EG (ChCl and ethylene glycol) in the 1:2 molar ratios have been prepared. To evaluate the capability of studied DESs as CPEs for IP delivery of INS, the rat skin sample was treated with each DES. The effects of different experimental parameters (current density, formulation pH, INS concentration, NaCl concentration, and treatment time) on the in vitro transdermal iontophoretic delivery of INS were investigated. The in vitro permeation studies exhibited that INS was easily delivered employing ChCl/EG, and ChCl/GLY treatments, compared with ChCl/UR: the cumulative amount of permeated INS at the end of the experiment (Q24h) was found to be 131.0, 89.4, and 29.6 mg cm2 in the presence of ChCl/EG, ChCl/GLY, and ChCl/UR, respectively. The differences in Q24h values of INS are due to the different capabilities of the studied DESs to treat the epidermis layer of skin. In vivo experiments revealed that the blood glucose level in diabetic rats could be decreased using ChCl/EG, and ChCl/GLY as novel CPEs in the IP delivery of INS. The presented work will open new doors towards searching for novel CPEs in the development of transdermal IP of INS.