2025 : 4 : 22
Abbas Afkhami

Abbas Afkhami

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 7003454553
HIndex:
Faculty: Faculty of Chemistry and Petroleum Sciences
Address:
Phone:

Research

Title
Protein capped Cu nanoclusters-SWCNT nanocomposite as a novel candidate of high performance platform for organophosphates enzymeless biosensor
Type
JournalPaper
Keywords
Cu nanoclusters; Electrochemical biosensors; Enzymeless biosensor; Organophosphorus; Paraoxon; SWCNT
Year
2017
Journal BIOSENSORS & BIOELECTRONICS
DOI
Researchers ، Abbas Afkhami ، Hosein Khoshsafar ، ، Alireza Shahriyari

Abstract

A biocompatible nanocomposite including bovine serum albumin (BSA) template Cu nanoclusters (CuNCs@BSA) and single-walled carbon nanotubes (SWCNT) was synthesized to fabricate a highly sensitive electrochemical biosensor for paraoxon as a model of organophosphates. The UV–vis, fluorescence and Fourier transform infrared (FTIR) demonstrated that BSA entrapped in the nanocomposite film have been changed in its secondary structure so that it provided an enzyme like activity attributing to the high electrical conductivity of the entrapped copper nanoclusters. Also, the morphology and structure of prepared nanocomposites were investigated by transmission electronic microscopy (TEM) and scanning electron microscopy (SEM). In the prepared nanocomposite, the CuNCs@BSA found to play as a conductive holder as well as an accumulator of redox active centers on the surface of the electrode, and SWCNT improves the electrocatalytic activity along with conductivity of glassy carbon electrode (GCE) surface. The fabricated biosensor exhibited excellent sensitivity, acceptable stability, fast response, and high electrocatalytic activity toward the reduction of paraoxon. The reduction peak current vs paraoxon concentration was linear over the range 50 nM to 0.5 μM and 0.5–35 μM, with a limit of detection of 12.8 nM. Notable electrocatalytic properties of the developed electrode toward paraoxon indicated that the nanocomposite possesses a promising potential to fabricate the third generation enzyme-free electrochemical biosensors, bioelectronics and state-of-the-art biomedical devices in the future. © 2016 Elsevier B.V.