2025 : 4 : 21
Abbas Afkhami

Abbas Afkhami

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId: 7003454553
HIndex:
Faculty: Faculty of Chemistry and Petroleum Sciences
Address:
Phone:

Research

Title
Ni/Co Bimetallic Metal−Organic Frameworks on Nitrogen-Doped Graphene Oxide Nanoribbons for Electrochemical Sensing of Doxorubicin
Type
JournalPaper
Keywords
bimetallic metal−organic framework, nitrogen-doped graphene oxide nanoribbons, unzipping MWCNTs, electrochemical sensor, doxorubicin
Year
2022
Journal ACS Applied Nano Materials
DOI
Researchers ، Tayyebeh Madrakian ، Abbas Afkhami ، Mazaher Ahmadi

Abstract

Metal−organic frameworks (MOFs) have previously been researched for electrochemical sensor development. MOFs are commonly stated to have low conductivity, and improving their conductivity remains a significant challenge. We described the preparation of an electrochemical sensor depending on the in situ growth of NiCo-BTC bimetallic MOFs, as model bimetallic MOFs, on a glassy carbon electrode modified with conductive nitrogen-doped graphene oxide nanoribbons (NiCoBTC MOFs/N-GONRs/GCE). The proposed NiCo-BTC MOFs/ N-GONRs/GCE was characterized using X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and Raman spectroscopy. The squarewave voltammetry response of NiCo-BTC MOFs/N-GONRs/GCE to doxorubicin (DOX) is significantly greater than that of NiCoBTC MOFs/GCE due to the synergic effect between N-GONRs and NiCo-BTC MOFs. The NiCo-BTC MOFs on the modified electrode act as active materials for sensing DOX. The calibration curve for DOX at the NiCo-BTC MOFs/N-GONRs/GCE showed two linear dynamic ranges, 0.01−1.0 and 1.0−80 μmol L−1 , with a detection limit of 0.006 μmol L−1 (or 6 nmol L−1 ), which is less than the DOX concentration in human plasma samples (i.e., 77.2 ± 10.5 nmol L−1 ). Here, a modified electrode was designed using the large surface area of bimetallic MOFs and conductivity of N-GONRs for the electrochemical sensing of DOX. The current procedure offers a viable solution to the poor conductivity of bimetallic MOFs. Finally, the observed result shows that the proposed NiCo-BTC MOFs/GCE is promising for determining DOX in real samples of human urine and serum.