مشخصات پژوهش

صفحه نخست /The application of CFRP to ...
عنوان
The application of CFRP to strengthen buried steel pipelines against subsurface explosion
نوع پژوهش مقاله چاپ‌شده
کلیدواژه‌ها
CFRP' buried steel pipelines' explosion
چکیده
Multiple explosions in the route of oil and gas transmission pipelines during recent years demonstrate that terrorist attacks and sabotages have unfortunately increased. The present investigation is carried out numerically in order to minimize the amount of damages imposed on steel pipelines under close-in explosions. This research presents a novel concept, using CFRP (Carbon Fiber Reinforced Polymer) to strengthen the wall of steel pipelines against these incidents. For this purpose, a full coupled 3D finite element model developed using a combined Eulerian-Lagrangian method. The simplified Johnson-Cook material model, the JWL equation of state, and the ideal gas equation of state were employed for modeling the pipe material behavior, charge detonation, and air, respectively. Mechanical behavior of the composite wrap was simulated using an anisotropic material model and the damage initiation criteria were based on Hashin's theory. In addition, soil mass behavior was modeled applying a Drucker-Prager strength criterion with piecewise hardening and hydro tensile limit accompanied by Mie-Grüneisen equation of state. Several comparisons carried out between the results from present investigation and those from field and empirical studies and good agreements were observed. The results show that using a proper thickness of CFRP wrap for every particular circumstance can significantly improve the per- formance of steel pipelines under blast loads. For instance, in the current example, maximum equivalent strains developed in the most of the studied pipelines decreased by over 30% (up to 64%) with the application of 4-mm-thickness CFRP wrap. The present study contributes to protective design of steel pipelines.
پژوهشگران